Translation of Cellular Therapies for Neural Repair in Stroke: Concepts in Pre-Clinical to Clinical Movement and Clinical Trial Design

CIRM/ Regenerative Medicine Consortium
Roundtable
Best Practices in Clinical Design
For First-in-Human Stem Cell-Based Therapy

S. Thomas Carmichael, M.D., Ph.D. Professor, Vice Chair for Research Department of Neurology David Geffen School of Medicine

Key Clinical Translational Issues in Cell Therapy for Central Nervous System Disease

- **Disease heterogeneity:** location, location, location in acute brain injury (especially stroke)
- Disease evolution: temporal phases of damage and repair in acute CNS injury
- Pre-clinical and clinical outcome measures:
 matching rodent and human recovery indices
- Activity of the patient in clinical trials of neural repair

Disease Heterogeneity

- Stroke occurs in many different brain areas
- Damage disrupts different primary functional regions, and indirectly disconnects distinct circuits
- Certain functions are more difficult to measure in clinical outcome
- Sensorimotor functions are only ones well represented in rodents
- Sum total of these limitations is that clinical trials need to focus on stroke that produces deficits and occurs in locations that are supported by pre-clinical modeling
- For most stroke work this means Middle Cerebral Artery territory infarcts that are centered in the striatum/basal ganglia
- Fortunately this is approx 40% of all human stroke

Disease Evolution

Goal: want to target the CNS disease when prospective therapy is likely to have its maximal effect

80% of stroke recovery occurs by one month
95% of stroke recovery occurs by 3 months
most of the variance (up to 86%) in stroke recovery is accounted for after the first 30 days
Gains do occur in chronic stroke, but they are smaller (1/10) and require much greater effort

Language Recovery

Timeline of Stroke from Damage to Repair

The pre-clinical evidence from most studies of cellular therapies in stroke is that they modify processes of neural repair: angiogenesis, neurogenesis, formation of new connections, inflammation

Spectrum of Injury to Benefit in Excitation Clarkson et al Nature 2010, J Neurosci 2011

Pre-Clinical and Clinical Outcome Measures

Principles:

- Linearity
- Matching functions
- Measuring impairments

Linearity

Problem with pre-clinical stud

Motor tests

Raising rat by tail (normal=0; maximum=3) (3)

Flexion of forelimb 11

Flexion of hindlimb 11

Head moved >10° to vertical axis within 30 s 11

			Positive Treatment
Behavioral Test	Assessment of	Frequency Used	Effects
mNSS	motor and sensory functions, balance and reflexes	29/70 (41%)	28/29 (97%)
Adhesive tape removal	forelimb sensory asymmetry	25/70 (36%)	
Rotarod	coordination, balance, and gross motor functions	18/70 (26%)	17/18 (94%)
Limb-placing	responses to tactile and proprioceptive stimulation	11/70 (16%)	9/11 (82%)
Cylinder	spontaneous use of forelimbs	8/70 (11%)	4/8 (50%)
Treadmill	motor functions, gait	5/70 (7%)	5/5 (100%)
Tapered beam-walking	hindlimb functions	3/70 (4%)	0/3 (0%)
Montoya's staircase	skilled forelimb use	1/70 (1%)	0/1 (0%)
Water maze, passive avoidance	cognitive functions	14/70 (20%)	11/14 (79%)
Others (e.g., spontaneous activity, apomorphine/amphetamine-induced rotation)		20/70 (29%)	

Hicks et al Cell Stem Cell 2009

Pinna reflex (head shaken when auditory meatus is touched)	1
Corneal reflex (eye blink when cornea is lightly touched with cotton)	1
Startle reflex (motor response to a brief noise from clapping hands)	1
Seizures, myoclonus, myodystony	1
Maximum points	(18)

One point is given for an absent reflex tested or for the animal's inability to perform a task: 1-6 mild injury, 7-12 moderate injury, 13-18 severe injury

Matching Functions

Linear measures of rodent sensorimotor function to linear measures of human sensorimotor function

Grid walking, 'Cat Walk test' to comfortable gait test Cylinder, grid walking, vibrissal-paw,reach or distal limb control to Fugl Meyer, ARAT, Wolf Motor Function Tests

Measuring Impairments, and not disal

Cell therapies in pre-clinical trials prod specific aspects of sensory function, m sensorimotor integration

A disability (vs. impairment) scale catc

- Good inter-rater reliability, strong test-re-test reliability, good construct validity (for acute stroke)
- Terrible ability to detect elements of recovery, relate to pre-clinical data, resolve compensation vs. recovery

TABLE	1	Modified RSs
IADLL		MODILIED V22

Grade	mRS
0	No symptoms at all
1	No significant disability: despite symptoms, able to carry out all usual duties and activities
2	Slight disability: unable to perform all previous activities but able to look after own affairs without assistance
3	Moderate disability: requiring some help but able to walk without assistance
4	Moderately severe disability: unable to walk without assistance and unable to attend to own bodily needs without assistance
5	Severe disability: bedridden, incontinent and requiring constant nursing care and attention
6	Death [*]

Activity of the Patient

- Unlike any other organ system, CNS plasticity and recovery are directly related to behavioral activity of the patient
- Physical activity (in neurorehabilitation) has a dose effect
- Several clinical trials in stroke and spinal cord injury showed no improvement compared with very good rehab (LEAPS, MIT robot, SCILT [body weight treadmill training in spinal cord injury])
- Chronic stroke patients can exhibit a limited recovery to neurorehab alone (note that this is not detectable in mRS)
- Pre-clinical evidence for "training the transplant"

